

SCALE ICE MAKERS

SERVICE TRAINING

Welcome to SCOTSMAN Mar series service training for MAR 56, MAR 76, MAR 106, MAR 126, MAR 206 e MAR 306.

MAR 56 AS/WS

Production max:

380 Kg/24h scale thickness = 2 mm

426 Kg/24h scale thickness = 1 mm

MAR 76 AS/WS

Production max:

510 Kg/24h scale thickness = 2 mm

570 Kg/24h scale thickness = 1 mm

Model MAR 106 AS/WS

Production max:

700 Kg/24h scale thickness = 2 mm

785 Kg/24h scale thickness = 1 mm

Model MAR 126 AS/WS

Production max:

1000 Kg/24h scale thickness = 2 mm

MAR 206 AS/WS

Production max:

1650 Kg/24h scale thickness = 2 mm

1850 Kg/24h scale thickness = 1 mm

MAR 306 ASR /WS

Production max:

2200 Kg/24h scale thickness = 2 mm

2465 Kg/24h scale thickness = 1 mm

Ice chute supplied with MAR series

- •COVERMARS (MAR 56-76-106-126)
- •COVERMARL (MAR 206-306)

Further MAR series installation, apart stacking on bin is on top of storing room

CONTENITORE o CELLA REFRIGERATA

ICE Volume - Weight : 2.0 m³/ton

Short time ice storing:

not refrigerated room with capacity of 2/3 of ice maker daily capacity

Long time ice storing:

refrigerated room with twice ice maker daily capacity and inside temperature of -6°C

Operation limit condition:

Min. Ambient temperature 5°C (50F)

Max. Ambient temperature 40°C (100F)

Min. Water temperature 5°C (40F)

Max. Water temperature 35°C (90F)

Min. Water pressure
 1 bar (14 PSI)

Max. Water pressure 5 bar (70 PSI)

INSTALLATION - AIR FLOWING

MAR 56

INSTALLATION - AIR FLOWING

INSTALLATION - AIR FLOWING

INSTALLATION – LIMITS LOCATION

MAR 306 REMOTE CONDENSER

CALCULATION FORMULA

(distances in METERS)

D + R + H < 9

where:

- D=Drop = $dd \times 6.6$
- R=Rise = $rd \times 1.7$
- H=Horiz. run = hd

INSTALLATION – LIMITS LOCATION

MAR 306 REMOTE CONDENSER

- Maximum rise machinecondenser: 3 physical meters
- Maximum drop ice machinecondenser: 1 physical meter
- Physical line set maximum length: 6 meters
- Calculated line set maximum length: 9 meters

INSTALLATION – LIMITS LOCATION

INSTALLATION – LIMITS LOCATION

MAR 306 REMOTE CONDENSER

DO NOT:

 Route a line set that rises, then falls, then rises

 Route a line set that falls, then rises, then falls

INSTALLATION – ELECTRICAL PLUMBING

Cable size-Fuse protection of the unit:

• MAR 56 \rightarrow 126: 3×16 Ampere, 400 Volt

• MAR 206: 3×24 Ampere, 400 Volt

• MAR 306: 3×32 Ampere, 400 Volt

INSTALLATION – ELECTRICAL PLUMBING

The MAR 106, 126, 206 and 306 are equipped with T2 T3 a compressor crankcase heater L2 13 11 that **MUST be** always energised mainly with the machine in OFF mode. L1 L2 L3 N

INSTALLATION – ELECTRICAL PLUMBING

It is possible to turn the the ice maker OFF by remote ctrl connecting device art NC contact #14 & # 15 i.e.:

- ICESENSOR0003
- REMOTE SWITCH

INSTALLATION – ELECTRICAL PLUMBING

At the first start up of the machine, it is IMPERATIVE to energize the unit (timer in the OFF position) at least 4 hours before the machine start up.

INSTALLATION – IDRAULIC CIRCUIT

Connect the 3/4" water inlet male threat to the water supply line by means of the rubber hose provided with machine.

Install on water supply line closed to the machine a water valve (tap).

INSTALLATION – IDRAULIC CIRCUIT

Connect the 20 mm O.D. fitting of the water drain with the flexible hose supply with the machine securing by its proper clamp.

NEW MAR COMPACT SERIES TYPICAL INSTALLATION

INSTALLATION – IDRAULIC CIRCUIT

On the water cooled version there is a separate male water inlet fitting connected directly to the water regulating valve that must be connect to the water supply line by means of a suitable hose and......

INSTALLATION – IDRAULIC CIRCUIT

.....a separate male water drain fitting that must be connected to the drain receptacle with a separate hose.

NEW MAR COMPACT SERIES TYPICAL INSTALLATION

INSTALLATION - BIN THERMOSTAT

Remove bin thermostat clamps.

Run thermostat bulb underneath evaporator basin and pass the same throughout suitable hole located at ice spout

INSTALLATION - BIN THERMOSTAT

The machine remains in operation producing continuously the scale cice till the storage bin is completely full.

START UP CHECKING

START UP CHECKING

• Turn the unit ON

OPEN shut OFF valve

START UP CHECKING

.....the water is entering though the float valve flowing into the water basin.

START UP CHECKING

START UP CHECKING

START UP CHECKING

MAR 56 →126: 50 mm (plastic reservoir)

MAR 206-306: 90-95 mm

START UP CHECKING

Move power switch to **ON** position.

START UP CHECKING

WARNING!!!!

As the drive motor, turning the evaporator drum, is three phase it

is **IMPERATIVE** to check

IMMEDIATELY at START UP of

the machine about the correct direction of rotation.

START UP CHECKING

MAR uses an electrical three phases control device which alerts installer in case of wrong wiring by keeping green **LED ON**.

START UP CHECKING

Correct wiring is shown by both LEDs Green and Orange steady ON together.

START UP CHECKING

Meanwhile unit is under power KT1 device is energized as well in order to delay compressor start up by 18'Later and orange LED blinks

START UP CHECKING

By means of a pulleys and V belt transmission the gear reducer starts to turn in clockwise direction moving the shaft of the drum.

START UP CHECKING

In the meantime also the water pump is in operation sucking water from the evaporator basin and distributing the same to the upper distributor tube.

START UP CHECKING

Once 18' is elapsed orange LED goes steady ON and compressor starts.

START UP CHECKING

On the air cooled version, as soon as the condensing temperature rises up to the CUT IN value of the fan pressure control, the fan motor starts to turn in **ON.....**OFF

START UP CHECKING

Fan pressure control is located at control box and keeps operating pressures as:

• Cut IN: 17 bar (250 psi)

• Cut OUT: 15 bar (220 psi)

START UP CHECKING

MAR series are also equipped by a manual reset HI pressure switch:

OPERATING SETTING:

• 34±2 bar (480±30 psi) AIR cooled models

• 30 bar (420 psi) WATER cooled models

START UP CHECKING

....as well as an **Automatic Reset Low** Pressure Switch directly installed on the suction line and cutting Off at 0.2 bar (3 psi).

START UP CHECKING

The quantity of heat rejected as well as the flow rate of the fan motor/s of the different MAR models is listed on the attached chart.

	Heat exchange (Kcal/h - BTU)	Air m3/h
MAR 56	3000-12000	1200
MAR 76	4900-19500	1200
MAR 106	7500-30000	1200
MAR 126	9750-38800	1200
MAR 206	11000-43800	2000
MAR 306 RC	16200-64500	4000

START UP CHECKING

After two-three

minutes the refrigerant

manifold used to

supply refrigerant to

the drum start to be

frosted....

START UP CHECKING

....and few seconds
later the first pieces
of scale ice are
scraped from the
outside surface of
the drum by the
S.S. scraping blade.

START UP CHECKING

After approximately
20-30 minutes of
operation the
evaporator drum must
be frosted from side to
side.

If not, EXP valve adjustment may be required.

START UP CHECKING

Turning spray system will change ice quality wet/dry

START UP CHECKING

Ice maker keep on operating untill ice level reachs

START UP CHECKING

.....bin thermostat bulb then compressor turn

OFF at first...

START UP CHECKING

....and KT2 delay relay keep drive motor - gear reducer in operation for 18' with orange LED blinking thus to clean the evaporator by ice then ice maker turns OFF

OPERATING PRINCIPLES and COMPONENTS

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

OPERATING PRINCIPLE – WATER CIRCUIT

OPERATING PRINCIPLE – MECHANICAL PARTS

OPERATING PRINCIPLE – MECHANICAL PARTS

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

omponents of the gerant system of the series are loosed by:

PRESSOR

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

IPRESSOR

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

IDENSER

AD EC 70 100 100 200

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

MOTE NDENSER

LY MAR 306)

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

NOTE CONDENSER LY MAR 306)

cooled condenser mounted on the platform base with electrical ction box, condenser shround, fan motors, fan protection grid and fan motor pressure controls

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

MAR 56 - 76 - 106 - 126

TER COOLED CONDENSER

MAR 206 - 306

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

PORATOR

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

AT EXCHANGER

duces flash gas in uid line

duces liquid frigerant in suction

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

T GLASS

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

MATIC EXP VALVE SETTING :

MAR 56→126

5 mm 3.0 bar

IAR 206 & 306

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

SEAL MECHANISM

OPERATING PRINCIPLE – REFRIGERANT CIRCUIT COMPONENTS

ER

OPERATING CYCLES – WATER CIRCUIT

DAT VALVE

OPERATING CYCLES – WATER CIRCUIT

OPERATING CYCLES – WATER CIRCUIT

OPERATING CYCLES – WATER CIRCUIT

TER RESERVOIR

STIC)

USED on

R 206 & 306

OPERATING CYCLES – WATER CIRCUIT

chanical parts:

AR REDUCER

R 56→126: 1/600

R 206 & 306: 1/552

E: Gear reducer icant is life lasting and

OPERATING PRINCIPLE – MECHANICAL PARTS

PULLEYS & BELTS

	R.P.M. THICK ICE 2 mm	R.P.M. THIN ICE 1 mm
AS/WS	0.9	1.25
AS/WS	1.1	1.25
06 AS/WS	1.5	2.3
26 AS/WS	2.4	
06 AS/WS	1.05	1.6
06 RC	1.6	2.9

R KEY

NEW MAR COMPACT SERIES

OPERATING PRINCIPLE – MECHANICAL PARTS

OPERATING PRINCIPLE – MECHANICAL PARTS

OPERATING PRINCIPLE – MECHANICAL PARTS

st washer e must tch the tal pin

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

/E MOTOR

2 HP

0/230 Volt

/60 Hertz

2/2,1 Amp

00 R.P.M. WITH RMAL PROTECTION

E: ROTATION MUST BE

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

MOTOR/S

M: 1300 (1560)

TT: 70

IP: 0.7

0V/50-60Hz/1Ph

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

ER PRESSURE CTL

bar (7psi) OFF

bar (12 psi) ON

OMATIC RESET

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

POUT SWITCH

THE UNIT OFF
ENLY AS SOON AS
ACH /STACK AT ICE
T AREA

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

RESSURE CTL

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

PRESSURE CTL

THERMOSTAT

NEW MAR COMPACT SERIES

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

TAL TIMER

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

IME DELAY

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

TIME DELAY

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

ASE MONITORING RELAY

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

PRESSURE CTRL

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

JM ROTATION ITROL BOARD & ET PUSH BUTTON

ck the evaporator ing by the mean of ct hall sensor ch has to detect pined of max 40" each

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

CT HALL SENSOR

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

MINAL PLUG

N/C contact

OPERATING PRINCIPLE – ELECTRICAL COMPONENTS

ITROL PANEL

